UNIVERSITY OF SASKATCHEWAN
Department of Physics and Engineering Physics

Physics 115.3
MIDTERM TEST

October 20, 2011

NAME:
(Last)
(Please Print)
(Given)

STUDENT NO.:

LECTURE SECTION (please check):
- 01 B. Zulkoskey
- 02 Dr. R. Pywell
- 03 Dr. K. McWilliams
- C15 F. Dean

INSTRUCTIONS:
1. This is a closed book exam.
2. The test package includes a test paper (this document), a formula sheet, and an OMR sheet. The test paper consists of 8 pages. It is the responsibility of the student to check that the test paper is complete.
3. Only Hewlett-Packard HP 10s or HP 30s or Texas Instruments TI-30X series calculators, or a calculator approved by your instructor, may be used.
4. Enter your name and student number on the cover of the test paper and check the appropriate box for your lecture section. Also enter your student number in the top right-hand corner of each page of the test paper.
5. Enter your name and STUDENT NUMBER on the OMR sheet.
6. The test paper, the formula sheet and the OMR sheet must all be submitted.
7. The marked test paper will be returned. The formula sheet and the OMR sheet will NOT be returned.

ONLY THE THREE PART B QUESTIONS THAT YOU INDICATE WILL BE MARKED
PLEASE INDICATE WHICH THREE PART B QUESTIONS ARE TO BE MARKED

<table>
<thead>
<tr>
<th>QUESTION NUMBER</th>
<th>TO BE MARKED</th>
<th>MAXIMUM MARKS</th>
<th>MARKS OBTAINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-A5</td>
<td>☑</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

continued on page 2...
PART A

FOR EACH OF THE FOLLOWING QUESTIONS IN PART A, ENTER THE MOST APPROPRIATE RESPONSE ON THE OMR SHEET.

A1. Using the dimensions given for the symbols in the table, determine which one of the following expressions is dimensionally correct.

\[\frac{1}{[\tau]} \neq \frac{[L]}{[\tau]^2 [L]} \]

\[\frac{1}{[T]} \neq \sqrt{\frac{[L]}{[\tau]^2}} \]

\[\frac{[L]}{[T]} \neq \frac{[L]}{[T]} \]

\[f = \frac{g}{2\pi l} \]

\[2\pi f = \frac{g}{\sqrt{l}} \]

\[2\pi f = \frac{1}{\sqrt{g l}} \]

\[f = 2\sqrt{g l} \]

\[(A) \ f = \frac{g}{2\pi l} \quad (B) f = 2\pi g l \quad (C) 2\pi f = \frac{g}{\sqrt{l}} \quad (D) 2\pi f = \frac{1}{\sqrt{g l}} \quad (E) f = 2\sqrt{g l} \]

A2. A traffic light of mass \(M \) hangs from two cables. Cable 1 has a tension of magnitude \(T_1 \), and the cable makes an angle \(\theta_1 \) with the horizontal, as shown. Cable 2 has a tension of magnitude \(T_2 \), and the cable makes an angle \(\theta_2 \) with the horizontal, as shown. Which one of the following equations is valid for the traffic light?

\[\sum F = 0 \]

\[\sum F_x = 0 \]

\[-T_1 \cos \theta_1 + T_2 \cos \theta_2 = 0 \]

\[T_1 \cos \theta_1 = T_2 \cos \theta_2 \]

\[A \]

\[(A) \ T_1 + T_2 = Mg \]

\[(B) T_1 \cos \theta_1 = T_2 \cos \theta_2 \]

\[(C) T_1 \sin \theta_1 = T_2 \cos \theta_2 \]

\[(D) T_1 \cos \theta_1 = T_2 \sin \theta_2 \]

\[(E) T_1 \sin \theta_1 = T_2 \sin \theta_2 \]

A3. By what factor does the volume of a cube increase if the lengths of the edges are doubled?

\[\sqrt[3]{2} \]

\[\sqrt[4]{2} \]

\[\sqrt{2} \]

\[\sqrt[6]{2} \]

\[(A) \ 16 \quad (B) 8 \quad (C) 4 \quad (D) 2 \quad (E) \sqrt[2]{2} \]

A4. You have just performed an experiment in which you measured many values of two quantities, \(A \) and \(B \). According to theory, \(A = cB^3 + A_0 \). You want to make a graph of your data that enables you to determine the values of \(c \) and \(A_0 \) from a slope and a vertical axis intercept. What quantities do you put on the vertical and horizontal axes of the plot?

\[\vec{A} \]

\[(A) \ A \text{ vertical}, B^3 \text{ horizontal} \]

\[(B) \ A \text{ vertical}, B \text{ horizontal} \]

\[(C) \ B \text{ vertical}, A \text{ horizontal} \]

\[(D) \ B \text{ vertical}, A^3 \text{ horizontal} \]

\[(E) \ A \text{ vertical}, \sqrt[3]{B} \text{ horizontal} \]

A5. \(\vec{A} \) in the drawing is equal to

\[\vec{C} + \vec{F} \]

\[\vec{C} + \vec{D} + \vec{E} \]

\[\vec{C} + \vec{F} \]

\[\vec{B} + \vec{C} \]

\[\vec{B} + \vec{F} \]

continued on page 3...
A6. A ball is kicked at an angle of 30° above the horizontal ground. Ignoring air resistance, which one of the following statements correctly describes the situation at the top of the ball’s trajectory?

(A) The velocity and acceleration of the ball are in opposite directions.
(B) The velocity and acceleration of the ball are both zero.
(C) The velocity and acceleration of the ball are parallel.
(D) The velocity and acceleration of the ball are perpendicular.
(E) The velocity and acceleration of the ball have their maximum magnitudes.

A7. An object is undergoing straight-line motion and the graph of its velocity versus time is shown in the diagram. Which one of the following statements is correct for the situation described by the graph?

(A) The velocity of the object is constant. ✗
(B) The velocity of the object is given by the slope of the graph. ✗
(C) The acceleration of the object is constant. ✓
(D) The acceleration of the object is increasing with time. ✗
(E) The acceleration of the object is decreasing with time. ✗

\[\text{accel'ln} = \text{slope of graph} \]

\[\text{vs} \text{t} \]

A8. A pebble (Pebble 1) is thrown horizontally from the top of a tall cliff and lands on the horizontal ground below. At the same time, a second pebble (Pebble 2) is dropped (released from rest) from the top of the cliff. Which one of the following statements is correct?

(A) Pebble 1 reaches the ground first, and it has a speed greater than Pebble 2 has when Pebble 2 reaches the ground.
(B) Pebble 2 reaches the ground first, and it has a speed greater than Pebble 1 has when ball Pebble 1 reaches the ground.
(C) Both pebbles hit the ground at the same time, but Pebble 1 has a speed greater than Pebble 2 when they reach the ground.
(D) Pebble 1 reaches the ground first, but both pebbles have the same speed when they reach the ground.
(E) Pebble 2 reaches the ground first, but both pebbles have the same speed when they reach the ground.

Motion are the same, and time depends on vertical motion

A9. An object moves along the x-axis. The graph shows the velocity of the object as a function of time. In which time interval(s) (labeled a, b, c and d on the graph) is the acceleration of the object zero?

(A) Time intervals a, b, c and d.
(B) Time intervals b, c and d.
(C) Time intervals b and c.
(D) Time intervals a and d.
(E) Time interval a only.

\[\text{accel'ln is zero when} \]

\[\text{velocity is constant} \]

A10. If a net force, with magnitude \(F \), acts on a blue object with mass \(m \), the object has an acceleration with magnitude \(a \). If a net force with a magnitude which is 6 times \(F \) acts on a red object with mass 3 times \(m \), the red object has an acceleration with magnitude...

(A) \(3a \)
(B) \(2a \)
(C) \(a/2 \)
(D) \(a/6 \)
(E) that cannot be determined, since the answer depends on the direction of the net force acting on the red object.

\[\text{BLUE: } F = ma_{blue} \]

\[a_{blue} = \frac{F}{m} = a \]

\[\text{RED: } 6F = 3m \cdot a_{red} \]

\[a_{red} = \frac{6F}{3m} = 2\left(\frac{F}{m}\right) \]

\[a_{red} = 2a_{blue} = 2a \]

continued on page 4...
A11. A car travels around a circular curve without slipping. When the road surface is horizontal, which force is responsible for holding the car on the road in the circular path as it travels around the curve?

(A) the weight of the car
(B) the kinetic friction force between the tires of the car and the road
(C) the static friction force between the tires of the car and the road
(D) the vertical component of the normal force
(E) the horizontal component of the normal force

A12. A big truck and a small car drive around the same circular curve in a road. The mass of the truck is four times larger than the mass of the car. If they drive around the curve at the same speed then what is the ratio of the radial acceleration of the truck, \(a_r \), compared to that of the car, \(a_{rc} \)? In other words, what is \(a_r/a_{rc} \)?

(A) 4 \(a_r = \frac{v^2}{r} \)
(B) 2 \(a_{rc} = \frac{v^2}{R} \)
(C) 1 \(a_r = a_{rc} \)
(D) \(\frac{1}{2} \)
(E) \(\frac{1}{4} \)

A13. Consider an object moving in a circular path with constant speed. Which one of the following statements is TRUE?

(A) The speed is constant so the magnitude of the acceleration is zero.
(B) The speed is constant so the component of the acceleration in the direction of motion is always zero.
(C) The distance from the center is constant so the radial component of the velocity is always zero so the radial component of the acceleration must be zero.
(D) The component of the acceleration in the direction of motion is not zero.
(E) The radial component of the acceleration and the component of acceleration in the direction of motion have equal magnitudes.

A14. A satellite of mass \(m \) moves with a speed \(v \) in a stable circular orbit around the Earth. If a second satellite of mass \(2m \) is placed in the same stable circular orbit, what must be its speed in order to maintain this orbit?

(A) \(\frac{1}{4} v \)
(B) \(\frac{1}{2} v \)
(C) \(v \)
(D) \(2 v \)
(E) \(4 v \)

\[\sum F_r = ma_r \Rightarrow \frac{GMm}{r^2} = m\frac{v^2}{r} \Rightarrow \frac{GM}{r} = \text{no dependence on } m. \]

A15. An object is moving with an angular speed \(\omega_1 \) in a uniform circular path of radius \(r_1 \). If the angular speed is doubled and the radius remains the same then which one of the following expressions for the new radial acceleration is correct?

(A) \(2 r_1 \omega_1^2 \)
(B) \(4 r_1 \omega_1^2 \)
(C) \(8 r_1 \omega_1^2 \)
(D) \(r_1 \omega_1^2 \)
(E) \(6 r_1 \omega_1^2 \)

\[\alpha_1 = r_1 \omega_1^2; \quad \alpha_2 = r_2 \omega_2^2 = \frac{r_1 (2 \omega_1)^2}{r_1 (2 \omega_1)^2}; \quad 4 r_1 \omega_1^2. \]

PART B

ANSWER THREE OF THE PART B QUESTIONS ON THE FOLLOWING PAGES AND INDICATE YOUR CHOICES ON THE COVER PAGE.

FOR EACH OF YOUR CHOSEN PART B QUESTIONS ON THE FOLLOWING PAGES, GIVE THE COMPLETE SOLUTION AND ENTER THE FINAL ANSWER IN THE BOX PROVIDED.

THE ANSWERS MUST CONTAIN THREE SIGNIFICANT FIGURES AND THE UNITS MUST BE GIVEN.

SHOW AND EXPLAIN YOUR WORK — NO CREDIT WILL BE GIVEN FOR ANSWERS ONLY.

EQUATIONS NOT PROVIDED ON THE FORMULAE SHEET MUST BE DERIVED.

USE THE BACK OF THE PREVIOUS PAGE FOR YOUR ROUGH WORK.

continued on page 5...
B1. You wish to hang a picture frame on the wall, but first you must decide where to put it. A friend holds the picture frame stationary against the wall while you observe. The picture frame has a mass of m. The coefficient of static friction between the frame and the wall is μ_s. Your friend pushes on the picture frame with a force of magnitude F_{push} at an angle of θ with the vertical, as shown in the diagram. The friend pushes with the minimum force needed to prevent the picture from sliding down the wall.

\[\sum F = 0, \quad \sum F_y = 0 \]
\[N_x + F_{\text{push}} = 0 \]
\[N_y = F_{\text{push}} \sin \theta = 0 \]
\[N = F_{\text{push}} \sin \theta \]

The picture is not moving, so $\sum F = 0$.

(a) Draw the free body diagram of the picture frame. (4 marks)

(b) Derive an expression for the magnitude of the minimum force with which your friend must push to prevent the picture frame from sliding down the wall. (6 marks)

\[
F_{\text{push}} = \frac{mg}{\mu_s \sin \theta + \cos \theta}
\]
B2. A knight is attempting to throw a rock from the top of a castle wall to hit a person on the horizontal ground below. The rock is thrown with an initial speed of $v_i = 4.60 \text{ m/s}$ in a direction that makes an angle $\theta = 52.0^\circ$ with the vertical castle wall. The person is a distance of $d = 7.00 \text{ m}$ from the base of the castle wall. The rock falls short of its target and hits the ground at a time of 1.51 s after it was thrown. (We may ignore air resistance in this problem.)

(a) Calculate the distance, s, by which the rock falls short of its target. (4 marks)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta x = d - s$</td>
<td>$\Delta y = -h$</td>
</tr>
<tr>
<td>$v_{ix} = v_i \sin \theta$</td>
<td>$v_{iy} = -v_i \cos \theta$</td>
</tr>
<tr>
<td>$a_x = 0$</td>
<td>$a_y = -g$</td>
</tr>
<tr>
<td>$v_{fx} = v_{ix}$</td>
<td>$v_{fy} = ?$</td>
</tr>
</tbody>
</table>

$\Delta t = 1.51 \text{ s}$

$s = d - v_i \sin \theta \Delta t$

$s = 7.00 \text{ m} - (4.60 \text{ m/s})(\sin(52.0^\circ))(1.51 \text{ s})$

$s = 1.53 \text{ m}$

(b) Calculate the height, h, of the castle wall. (6 marks)

$\Delta y = v_{iy} \Delta t + \frac{1}{2}a_y(\Delta t)^2$

$-h = -v_i \cos \theta \Delta t + \frac{1}{2}(-g)(\Delta t)^2$

$h = v_i \cos \theta \Delta t + \frac{1}{2}g(\Delta t)^2$

$h = (4.60 \text{ m/s})(\cos 52.0^\circ)(1.51 \text{ s}) + \frac{1}{2}(9.80 \text{ m/s}^2)(1.51 \text{ s})^2$

$h = 15.4 \text{ m}$
B3. A book is placed on a wooden plank which is at an angle of 35.0° to the horizontal. After the book is released it is measured to slide down the plank with an acceleration of 2.18 m/s².

(a) Draw the free body diagram of the book. (3 marks)

(b) Calculate the coefficient of kinetic friction between the book and the plank. (4 marks)

Choose the x-axis along the plank as shown. Then \(\Sigma F_x = ma \) and \(\Sigma F_y = 0 \)

\[
\begin{align*}
\Sigma F_x &= ma \\
W_x + f_{ux} &= ma \\
W_x &= ma \\
W_x &= ma \\
+ W \sin \theta - f_{ux} &= ma \\
mg \sin \theta - \mu_k N &= ma \\
mg \sin \theta - \mu_k mg \cos \theta &= ma \\
g \sin \theta - \alpha &= \mu_k g \cos \theta \\
\mu_k &= \frac{g \sin \theta - \alpha}{g \cos \theta} = \frac{(9.80 \text{ m/s}^2)(\sin 35.0^\circ) - 2.18 \text{ m/s}^2}{(9.80 \text{ m/s}^2)(\cos 35.0^\circ)} = 0.429
\end{align*}
\]

(c) If the book was released from rest, calculate the speed of the book after it has moved down the plank a distance of 66.0 cm. (3 marks)

\[
U_{fx}^2 = U_{ix}^2 - 2a_x \Delta x
\]

\[
U_{fx}^2 = U_{ix}^2 + 2a_x \Delta x
\]

\[
U_{fx} = \sqrt{2a_x \Delta x}
\]

\[
U_{fx} = \sqrt{2(2.18 \text{ m/s}^2)(0.660 \text{ m})}
\]

\[U_{fx} = 1.70 \text{ m/s} \]

continued on page 8...
B4. A vertical rod is rotating at a constant rate. A ball of mass 3.00 kg is attached to the top and bottom of the rod by strings of equal length, as shown in the diagram. The strings make an angle of \(\theta = 33.6^\circ \) with the vertical. Due to the rotation of the rod, the ball moves in a horizontal circle of radius 1.66 m at a constant speed of 10.0 m/s.

(a) Draw the free body diagram of the ball. (2 marks)

(b) Calculate the magnitude of the radial acceleration of the ball. (3 marks)

\[
\begin{align*}
\alpha_r &= \frac{v^2}{r} \\
\alpha_r &= \frac{(10.0 \text{ m/s})^2}{1.66 \text{ m}} = 60.2 \text{ m/s}^2
\end{align*}
\]

(c) Calculate the magnitude of the tension in the lower string. (If you did not obtain an answer for (b), use a value of 65.0 m/s^2.) (5 marks)

\[
\text{motion is horizontal, so } \sum F_y = 0
\]
\[
T_1 y + W y + T_2 y = 0
\]
\[
+ T_1 \cos \theta - W - T_2 \cos \theta = 0
\]
\[
T_1 = \frac{W}{\cos \theta} + T_2
\]
\[
T_1 \sin \theta + T_2 \sin \theta = m \alpha_r
\]
\[
(\frac{W}{\cos \theta} + T_2) \sin \theta + T_2 \sin \theta = m \alpha_r
\]
\[
W \tan \theta + T_2 \sin \theta + T_2 \sin \theta = m \alpha_r
\]
\[
2 T_2 \sin \theta = m \alpha_r - W \tan \theta
\]
\[
T_2 = \frac{m \alpha_r - mg \tan \theta}{2 \sin \theta} = \frac{3.00 \text{ kg} \left[(60.2 \text{ m/s}^2) - (9.80 \text{ m/s}^2) \times \tan 33.6^\circ \right]}{2 \sin 33.6^\circ}
\]
\[
T_2 = 146 \text{ N}
\]

\(\text{ALT ANS: } 159 \text{ N} \)

\(\boxed{146 \text{ N}} \)