UNIVERSITY OF SASKATCHEWAN
Department of Physics and Engineering Physics

Physics 115.3
MIDTERM TEST – Alternative Sitting

October 2009
Time: 90 minutes

NAME: ___ STUDENT NO.: ____________
(Last) Please Print (Given)

LECTURE SECTION (please check):

☐ 01 B. Zulkoskey
☐ 02 Dr. K. McWilliams
☐ 03 Dr. A. Robinson
☐ C15 F. Dean

INSTRUCTIONS:
1. This is a closed book exam.
2. The test package includes a test paper (this document), a formula sheet, and an OMR sheet. The test paper consists of 8 pages. **It is the responsibility of the student to check that the test paper is complete.**
3. Only Hewlett-Packard HP 10s or HP 30s or Texas Instruments TI-30X series calculators may be used.
4. Enter your name and student number on the cover of the test paper and check the appropriate box for your lecture section. Also enter your student number in the top right-hand corner of each page of the test paper.
5. Enter your name and STUDENT NUMBER on the OMR sheet.
6. The test paper, the formula sheet and the OMR sheet must all be submitted.
7. The marked test paper will be returned. The formula sheet and the OMR sheet will **NOT** be returned.

ONLY THE THREE PART B QUESTIONS THAT YOU INDICATE WILL BE MARKED
PLEASE INDICATE WHICH THREE PART B QUESTIONS ARE TO BE MARKED

<table>
<thead>
<tr>
<th>QUESTION NUMBER</th>
<th>TO BE MARKED</th>
<th>MAXIMUM MARKS</th>
<th>MARKS OBTAINED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-15</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>☐</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

continued on page 2...
PART A

FOR EACH OF THE FOLLOWING QUESTIONS IN PART A, ENTER THE MOST APPROPRIATE RESPONSE ON THE OMR SHEET.

A1. The mathematical relationship between three physical quantities is given by $a = \frac{b^2}{c}$. If the dimension of b is $[L]$, and the dimension of c is $[T]$, which one of the following choices is the dimension of a?

(A) $[L]$ (B) $\frac{[L]}{[T]}$ (C) $\frac{[L]^2}{[T]^2}$ (D) $[T]$ (E) $\frac{[L]}{[T]^2}$

A2. A typical influenza (H1N1) virus has a diameter of approximately 80 μm, when viewed in an electron microscope. Which one of the following options correctly expresses this diameter in scientific notation, in metres, to 2 significant figures?

(A) 8.00×10^{-4} m (B) 8.00×10^{-5} m (C) 8.0×10^{-4} m (D) 8.0×10^{-5} m (E) 8.0×10^{-3} m

A3. A 2.0-kg object moves in a straight line on a horizontal frictionless surface. The graph shows the velocity of the object as a function of time. The various equal time intervals are labeled I, II, III, IV, and V. The net force on the object always acts along the line of motion of the object. Which section(s) of the graph correspond to a condition of zero net force?

(A) V only (B) III only (C) II and IV (D) II, III, and IV (E) I, III, and V

A4. A physics student in a hot air balloon ascends vertically. Consider the following four forces that arise in this situation:

$F_1 =$ the weight of the hot air balloon
$F_2 =$ the weight of the student
$F_3 =$ the force of the student pulling on the earth
$F_4 =$ the force of the hot air balloon pulling on the student

Which two forces form an “interaction pair” that obeys Newton's third law?

(A) F_1 and F_2 (B) F_2 and F_3 (C) F_1 and F_3 (D) F_2 and F_4 (E) F_3 and F_4

A5. Which one of the following statements is correct concerning a situation where the net force on an object is not zero.

(A) The object must have an increasing speed.
(B) The object must have a decreasing speed.
(C) The object must be moving in a straight line.
(D) The object must have a velocity that is not constant.
(E) The object’s acceleration must be zero.

A6. Jupiter has 320 times the mass of the earth and a radius 11 times greater than that of the earth. Calculate the magnitude of the gravitational field strength at the surface of Jupiter, compared to that at the surface of the earth, g_E.

(A) $\frac{121}{320} g_E$ (B) $\frac{320}{11} g_E$ (C) $\frac{11}{32} g_E$ (D) $\frac{121}{160} g_E$ (E) $\frac{320}{121} g_E$

continued on page 3...
A7. If a car is travelling eastward and slowing down, which one of the following statements correctly describes the car’s motion?

(A) The car has a constant speed.
(B) The car has a constant velocity.
(C) The car’s acceleration is directed eastward.
(D) The car’s acceleration is directed westward.
(E) The car’s velocity is directed westward.

A8. Two identical balls are thrown horizontally from the roof of a building at the same time. Ignoring air resistance, if the initial velocity of ball 1 is twice the initial velocity of ball 2, which one of the following statements is true?

(A) Ball 1 reaches the ground first.
(B) Ball 2 reaches the ground first.
(C) Both balls reach the ground at the same time and with the same final velocity.
(D) Both balls reach the ground at the same time but ball 1 has a greater final speed.
(E) Both balls reach the ground at the same time but ball 2 has a greater final speed.

A9. John and Mary leave their apartment to go to school. John walks 3 km west and then turns and walks 4 km north. Mary walks a distance of 5 km in a direction of 53° north of west directly across an open field. Both John and Mary arrive at school at the same time. Which one of the following statements is correct concerning John’s and Mary’s average speeds and average velocities during their walks?

(A) Their average speeds are the same, their average velocities are not.
(B) Their average velocities are the same, their average speeds are not.
(C) Both their average speeds and their average velocities are the same.
(D) Neither their average speeds nor their average velocities are the same.
(E) The question cannot be answered without additional information.

A10. A ball is thrown vertically upward. Eventually it returns to the point from which it was thrown. Which one of the following velocity versus time graphs is correct for the motion of the ball while it is in free fall? (Up has been chosen as the positive direction and air resistance is negligible.)

(A) ![Graph A](image)
(B) ![Graph B](image)
(C) ![Graph C](image)
(D) ![Graph D](image)
(E) ![Graph E](image)

A11. An object moving in a circle at a constant speed has an acceleration that is

(A) in the direction of motion.
(B) toward the centre of the circle.
(C) away from the centre of the circle.
(D) opposite to the direction of motion.
(E) zero.

continued on page 4...
A12. The following is a free body diagram of an object which undergoes a displacement of magnitude Δr along the horizontal direction. Which one of the following equations represents the total work done on the object?

\[(A) \quad (T \sin \theta) \Delta r \]
\[(B) \quad (T \cos \theta) \Delta r \]
\[(C) \quad (T \cos \theta - T \sin \theta) \Delta r \]
\[(D) \quad (T \cos \theta - f_k) \Delta r \]
\[(E) \quad (T \sin \theta - f_k) \Delta r \]

A13. An object is initially moving in uniform circular motion with angular speed ω_1 and radius r_1. Both the angular speed and the radius are then doubled, and the object is once again in uniform circular motion. Which one of the following expressions for the new radial acceleration is true?

\[(A) \quad 2r_1 \omega_1 \]
\[(B) \quad 4r_1 \omega_1 \]
\[(C) \quad 8r_1 \omega_1^2 \]
\[(D) \quad 4r_1 \omega_1^2 \]
\[(E) \quad \left(\frac{\omega_1^2}{4} \right) r_1^2 \]

A14. A projectile is launched at an angle θ above the horizontal. Ignoring air resistance, what fraction of its initial kinetic energy does the projectile have at the top of its trajectory?

\[(A) \quad \cos \theta \]
\[(B) \quad \sin \theta \]
\[(C) \quad \tan \theta \]
\[(D) \quad \cos^2 \theta \]
\[(E) \quad \sin^2 \theta \]

A15. A ball on the end of a string is being swung in a vertical circle at constant speed. Where in the ball’s trajectory is the tension in the string greatest in magnitude?

\[(A) \quad \text{The tension in the string is constant throughout the ball’s motion.} \]
\[(B) \quad \text{The tension in the string is greatest at the highest point of the ball’s motion.} \]
\[(C) \quad \text{The tension in the string is greatest at the lowest point of the ball’s motion.} \]
\[(D) \quad \text{The tension in the string is greatest when the string is horizontal and the ball is moving up.} \]
\[(E) \quad \text{The tension in the string is greatest when the string is horizontal and the ball is moving down.} \]
B1. The broken lower leg in the diagram is held immobile (stationary) by the mass and pulley system. The hanging mass is 1.55 kg. The femur bone in the upper leg exerts a force on the lower leg in the horizontal direction. You may assume that the pulleys are ideal and that the rope is massless.

Free body diagram:

(a) In the space to the right of the above diagram, draw a free body diagram of the forces acting on the lower leg. Also show your choice of coordinate system. (4 marks)

(b) Calculate the magnitude of the weight of the lower leg. (3 marks)

(c) Calculate the magnitude of the force exerted by the femur on the lower leg. (3 marks)
B2. A 400-N kangaroo, initially crouching at rest, exerts a constant force on the ground during the first 0.600 m of a vertical jump as it straightens its body with its feet in contact with the ground. After the kangaroo’s feet leave the ground it rises an additional 1.80 m. You may ignore any effects due to air resistance.

(a) Calculate the speed of the kangaroo just after it loses contact with the ground. Hint: After losing contact with the ground the only force on the kangaroo is its weight. (3 marks)

(b) Calculate the constant acceleration of the kangaroo while it is still in contact with the ground. (3 marks)

(c) Calculate the magnitude of the force that the kangaroo exerts on the ground during the first 0.600 m of the vertical jump. (4 marks)
B3. A 225-kg crate is at rest on a ramp that is inclined above the horizontal at an angle of 20.0°.

(a) On the diagram above, draw all the forces acting on the crate and show your choice of coordinate system. (Air resistance can be ignored.) (3 marks)

(b) Calculate the magnitude of the static frictional force of the ramp on the crate. (3 marks)

(c) The crate is now bumped and it slides down the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.325. Calculate the magnitude of the acceleration of the crate as it slides down the ramp. (4 marks)
B4. An asteroid of mass 1.65×10^9 kg has a speed of 2.50 km/s toward Mars when it is at a distance of 2.78×10^9 m from Mars’s surface. The mass of Mars is 6.42×10^{23} kg and its radius is 3.39×10^6 m.

(a) Calculate the gravitational potential energy of the asteroid due to Mars when it is at a distance of 2.78×10^9 m from Mars’s surface. (Let the gravitational potential energy of the asteroid be zero when the asteroid is infinitely far away from Mars.) (4 marks)

(b) Calculate the speed of the asteroid just before it hits Mars’s surface. (6 marks)