PUBLICATIONS
[31] M. Alaverdashvili, P.G. Paterson, M.P. Bradley, “Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model”, Journal of Neuroscience Methods 247, pp. 58-66 (2015) doi: 10.106/j.jneumeth.2015.03.029

[30] S.K. Purdy, A.P. Knights, M.P. Bradley and G.S. Chang, “Light emitting diodes fabricated from carbon ions implanted into p-type silicon”, IEEE Trans. Elect Devices 62, pp. 914-918 (2015). DOI:10.1109/TED.2015.2395995

[29] G.R.S. Iyer, J. Wang, G. Wells, M.P. Bradley, and F. Borondics, “Nanoscale imaging of freestanding nitrogen doped single layer graphene”, Nanoscale 7, pp. 2289-2294 (2015) DOI: 10.1039/c4nr05385k

[28] G.R.S. Iyer, J Wang, G. Wells, G. Srinivasan, S. Payne, M. Bradley, and F. Borondics, “Large Area Freestanding Single Layer Graphene-Gold: A Hybrid Plasmonic Nanostructure”, ACS Nano 8 (6), pp 6353–6362 (2014). DOI: 10.1021/nn501864h

[27] E. de Mirandés, A. Zeggagh, M.P. Bradley, A. Picard and M. Stock, “Superconducting moving coil system to study the behaviour of superconducting coils for a BIPM cryogenic watt balance” Metrologia 51 S123–S131 (2014) doi:10.1088/0026-1394/51/2/S123

[26] D.S. Jessie and M.P. Bradley, “Magnetic Guiding of a Moving Ferromagnetic Sphere”, Progress In Electromagnetics Research M, 32, 245-256 (2013).doi:10.2528/PIERM1307160

[25] E. de Mirandés, A. Zeggagh, M. Bradley, A. Picard, H. Fang, A. Kiss, S. Solve, R. Chayramy and M. Stock, “Superconducting coil system to study the behavior of superconducting coils for a cryogenic watt balance”, Proc. 2012 Conference on Precision Electromagnetic Measurements (CPEM), 470-471 (2012). doi:10.1109/CPEM.2012.6251007

[24] A. Picard, M.P. Bradley, H. Fang, A. Kiss, E. de Mirandés, B. Parker, S. Solve, and M. Stock, “The BIPM Watt Balance: Improvements and Developments”, IEEE Trans. Instr. Meas. 60, 2378-2386 (2011).

[23] J.M. Maley, T.K. Sham, A. Hirose, Q. Yang, M.P. Bradley and R. Sammynaiken, “Chemical Reactions and Applications of the Reductive Surface of Porous Silicon”, J. Nanosci. Nanotechnol. 10, 6332-6339 (2010).

[22] M. Risch and M.P. Bradley, “Prospects for Band Gap Engineering by Plasma Ion Implantation”, physica status solidi (c) 6, S210-S213 (2009).

[21] M.P. Bradley, P.R. Desautels, D. Hunter, and M. Risch, “Silicon Electroluminescent Device Production via Plasma Ion Implantation”, physica status solidi (c) 6, S206-S209 (2009).

[20] P.R. Desautels, M.P. Bradley, J.T. Steenkamp, and J. Mantyka, “Electroluminescence in plasma ion implanted silicon”, phys. stat. sol. (a) 206, 985-988 (2009).

[19] M. Risch and M. Bradley, “Predicted depth profiles for nitrogen-ion implantation into gallium arsenide”, phys. stat. sol. (c) 5, 939-942 (2008).

[18] C.J.T. Steenkamp and M.P. Bradley, “Active Charge/Discharge IGBT Modulator for Marx Generator and Plasma Applications”, IEEE Trans. Plasma Sci. 35, 473-478 (2007).

[17] M.P. Bradley and C.J.T. Steenkamp, “Time-Resolved Ion and Electron Current Measurements in Pulsed Plasma Sheaths”, IEEE Trans. Plasma Sci. 34, 1156-1159 (2006).

[16] Q. Yang, W. Chen, C. Xiao, A. Hirose, and M. Bradley “Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma”, Carbon 43, 2635-2638 (2005).

[15] S. Qin, M.P. Bradley and P.L. Kellerman, “Faraday Dosimetry Characteristics of PIII Doping Processes”, IEEE Trans. Plasma Sci. 31, 369-376 (2003).

[14] S. Qin, M.P. Bradley, P.L. Kellerman, and K. Saadatmand, “Measurements of secondary electron emission and plasma density enhancement for plasma exposed surfaces using an optically isolated Faraday cup”, Rev. Sci. Inst. 73, 1153-1156 (2002).

[13] P.L. Kellerman, V. Benveniste, M.P. Bradley, and K. Saadatmand, “Particle trapping and annihilation within the extraction system of ion sources”, Rev. Sci. Inst. 73, 834-836 (2002).

[12] P.L. Kellerman, S. Qin, M.P. Bradley, and K. Saadatmand, “Ion depletion effects in sheath dynamics during plasma immersion ion implantation- models and data”, Rev. Sci. Inst. 73, 837-839 (2002).

[11] S. Qin, M.P. Bradley, P.L. Kellerman, and K. Saadatmand, “Measurement and analysis of deposition-etch characteristics of BF3 plasma immersion ion implantation”, Rev. Sci. Inst. 73, 840-842 (2002).

[10] P.L. Kellerman, M.P. Bradley, and S. Qin, “Active Charge Control in PIII- enlarging the process space”, Surface and Coatings Technology 156, 77-82 (2002).

[9] J.D. Bernstein, P.L. Kellerman, and M.P. Bradley, “Effects of Dopant Deposition on p+/n and n+/p Shallow Junctions formed by Plasma Immersion Ion Implantation”, in Proceedings of International Conference on Ion Implantation Technology 2000 pp. 464-467 (2000).

[8] P.L. Kellerman, J.D. Bernstein, and M.P. Bradley, “Ion Energy Distributions in Plasma Immersion Ion Implantation- Theory and Experiment”, in Proceedings of International Conference on Ion Implantation Technology 2000 pp. 484-487 (2000).

[7] S. Rainville, M.P. Bradley, J.V. Porto, J.K. Thompson, and D.E. Pritchard, “Precise Measurements of the Masses of Cs, Rb and Na - A New Route to the Fine Structure Constant”, Hyperfine Interactions 132,177-187 (2001).

[6] M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, and D.E. Pritchard, “Penning Trap Measurements of the Masses of 133Cs, 87,85Rb, and 23Na with Uncertainties <0.2 ppb”, Phys. Rev. Lett. 83, 4510-4513 (1999).

[5] M. Bradley, F. Palmer, D. Garrison, L. Ilich, S. Rusinkiewicz, and D.E. Pritchard, “Accurate mass spectrometry of trapped ions”, Hyperfine Interactions 108, 227-238 (1997).

[4] F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, S. Rusinkiewicz, and D.E. Pritchard, “Mass Spectrometry at 0.1 Part Per Billion for Fundamental Metrology”, IEEE Trans. Instr. Meas. 44, 550-552 (1995).

[3] D.E. Pritchard and M.P. Bradley, “Atom Traps Compared with Ion Traps”, Physica Scripta T59, 131-133 (1995).

[2] F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, and D.E. Pritchard, “Accurate Atomic Mass Measurements from Penning Trap Mass Comparisons of Individual Ions”, Physica Scripta T59, 144-154 (1995).

[1] J. Henningsen, M.P. Bradley, “Line-Dependent Saturation in CO2 Lasers”, Applied Physics B-Photophysics and Laser Chemistry 56, 347-353 (1993).